Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Intensive Care Med Exp ; 11(1): 26, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: covidwho-20234626

RESUMEN

Therapeutic plasma exchange (TPE) is a therapeutic intervention that separates plasma from blood cells to remove pathological factors or to replenish deficient factors. The use of TPE is increasing over the last decades. However, despite a good theoretical rationale and biological plausibility for TPE as a therapy for numerous diseases or syndromes associated with critical illness, TPE in the intensive care unit (ICU) setting has not been studied extensively. A group of eighteen experts around the globe from different clinical backgrounds used a modified Delphi method to phrase key research questions related to "TPE in the critically ill patient". These questions focused on: (1) the pathophysiological role of the removal and replacement process, (2) optimal timing of treatment, (3) dosing and treatment regimes, (4) risk-benefit assumptions and (5) novel indications in need of exploration. For all five topics, the current understanding as well as gaps in knowledge and future directions were assessed. The content should stimulate future research in the field and novel clinical applications.

2.
JMIR Res Protoc ; 12: e48183, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: covidwho-20234543

RESUMEN

BACKGROUND: In hospitalized patients with COVID-19, the dosing and timing of corticosteroids vary widely. Low-dose dexamethasone therapy reduces mortality in patients requiring respiratory support, but it remains unclear how to treat patients when this therapy fails. In critically ill patients, high-dose corticosteroids are often administered as salvage late in the disease course, whereas earlier administration may be more beneficial in preventing disease progression. Previous research has revealed that increased levels of various biomarkers are associated with mortality, and whole blood transcriptome sequencing has the ability to identify host factors predisposing to critical illness in patients with COVID-19. OBJECTIVE: Our goal is to determine the most optimal dosing and timing of corticosteroid therapy and to provide a basis for personalized corticosteroid treatment regimens to reduce morbidity and mortality in hospitalized patients with COVID-19. METHODS: This is a retrospective, observational, multicenter study that includes adult patients who were hospitalized due to COVID-19 in the Netherlands. We will use the differences in therapeutic strategies between hospitals (per protocol high-dose corticosteroids or not) over time to determine whether high-dose corticosteroids have an effect on the following outcome measures: mechanical ventilation or high-flow nasal cannula therapy, in-hospital mortality, and 28-day survival. We will also explore biomarker profiles in serum and bronchoalveolar lavage fluid and use whole blood transcriptome analysis to determine factors that influence the relationship between high-dose corticosteroids and outcome. Existing databases that contain routinely collected electronic data during ward and intensive care admissions, as well as existing biobanks, will be used. We will apply longitudinal modeling appropriate for each data structure to answer the research questions at hand. RESULTS: As of April 2023, data have been collected for a total of 1500 patients, with data collection anticipated to be completed by December 2023. We expect the first results to be available in early 2024. CONCLUSIONS: This study protocol presents a strategy to investigate the effect of high-dose corticosteroids throughout the entire clinical course of hospitalized patients with COVID-19, from hospital admission to the ward or intensive care unit until hospital discharge. Moreover, our exploration of biomarker and gene expression profiles for targeted corticosteroid therapy represents a first step towards personalized COVID-19 corticosteroid treatment. TRIAL REGISTRATION: ClinicalTrials.gov NCT05403359; https://clinicaltrials.gov/ct2/show/NCT05403359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48183.

3.
Res Pract Thromb Haemost ; 5(2): 278-290, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2267311

RESUMEN

The incidence of venous thrombosis, mostly pulmonary embolism (PE), ranging from local immunothrombosis to central emboli, but also deep vein thrombosis (DVT) in people with coronavirus disease 2019 (COVID-19) is reported to be remarkably high. The relevance of better understanding, predicting, treating, and preventing COVID-19-associated venous thrombosis meets broad support, as can be concluded from the high number of research, review, and guideline papers that have been published on this topic. The Dutch COVID & Thrombosis Coalition (DCTC) is a multidisciplinary team involving a large number of Dutch experts in the broad area of venous thrombosis and hemostasis research, combined with experts on virology, critically ill patients, pulmonary diseases, and community medicine, across all university hospitals and many community hospitals in the Netherlands. Within the consortium, clinical data of at least 5000 admitted COVID-19-infected individuals are available, including substantial collections of biobanked materials in an estimated 3000 people. In addition to considerable experience in preclinical and clinical thrombosis research, the consortium embeds virology-hemostasis research models within unique biosafety facilities to address fundamental questions on the interaction of virus with epithelial and vascular cells, in relation to the coagulation and inflammatory system. The DCTC has initiated a comprehensive research program to answer many of the current questions on the pathophysiology and best anticoagulant treatment of COVID-19-associated thrombotic complications. The research program was funded by grants of the Netherlands Thrombosis Foundation and the Netherlands Organization for Health Research and Development. Here, we summarize the design and main aims of the research program.

4.
Res Pract Thromb Haemost ; 6(6): e12798, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-2013782

RESUMEN

Background: Critically ill COVID-19 patients are in a hypercoagulable state with increased risk of thrombotic complications. Rotational thromboelastometry (ROTEM) is a viscoelastic test with the potential to reflect COVID-19-associated hypercoagulability and may therefore be useful to predict thrombotic complications. Objective: To investigate the potential of ROTEM profiles to predict thrombotic complications in critically ill COVID-19 patients. Patients/Methods: Retrospective multicenter cohort study in 113 adult patients with confirmed COVID-19 infection admitted to the intensive care unit (ICU) of two large teaching hospitals in the United States and in the Netherlands. ROTEM profiles of the EXTEM, INTEM, and FIBTEM tracings were measured within 72 h of ICU admission. Thrombotic complications encompass both arterial and venous thromboembolic complications, diagnosed with electrocardiogram, ultrasound, or computed tomography. ROTEM profiles were compared between patients with and without thrombosis. Univariable logistic regression followed by receiver operating characteristic (ROC) curves analysis was performed to identify ROTEM parameters associated with thrombosis. Results and Conclusions: Of 113 patients, 27 (23.9%) developed a thrombotic event. In the univariable analysis, EXTEM clot amplitude at 10 min (CA10) and EXTEM maximum clot formation (MCF) were associated with thrombosis with a p < 0.2 (p = 0.07 and p = 0.05, respectively). In ROC curve analysis, EXTEM CA10 had an area under the curve (AUC) of 0.58 (95% CI 0.47-0.70) and EXTEM MCF had an AUC of 0.60 (95% CI 0.49-0.71). Thereby, ROTEM profiles at ICU admission did not have the potential to differentiate between patients with a high and low risk for thrombotic complications.

7.
Microorganisms ; 9(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1323313

RESUMEN

BACKGROUND: Voriconazole is one of the first-line therapies for invasive pulmonary aspergillosis. Drug concentrations might be significantly influenced by the use of extracorporeal membrane oxygenation (ECMO). We aimed to assess the effect of ECMO on voriconazole exposure in a large patient population. METHODS: Critically ill patients from eight centers in four countries treated with voriconazole during ECMO support were included in this retrospective study. Voriconazole concentrations were collected in a period on ECMO and before/after ECMO treatment. Multivariate analyses were performed to evaluate the effect of ECMO on voriconazole exposure and to assess the impact of possible saturation of the circuit's binding sites over time. RESULTS: Sixty-nine patients and 337 samples (190 during and 147 before/after ECMO) were analyzed. Subtherapeutic concentrations (<2 mg/L) were observed in 56% of the samples during ECMO and 39% without ECMO (p = 0.80). The median trough concentration, for a similar daily dose, was 2.4 (1.2-4.7) mg/L under ECMO and 2.5 (1.4-3.9) mg/L without ECMO (p = 0.58). Extensive inter-and intrasubject variability were observed. Neither ECMO nor squared day of ECMO (saturation) were retained as significant covariates on voriconazole exposure. CONCLUSIONS: No significant ECMO-effect was observed on voriconazole exposure. A large proportion of patients had voriconazole subtherapeutic concentrations.

8.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1275790

RESUMEN

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Asunto(s)
COVID-19/terapia , Mesilato de Imatinib/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Respiración Artificial/estadística & datos numéricos , Insuficiencia Respiratoria/terapia , Anciano , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/virología , Permeabilidad Capilar/efectos de los fármacos , Terapia Combinada/efectos adversos , Terapia Combinada/métodos , Método Doble Ciego , Femenino , Humanos , Mesilato de Imatinib/efectos adversos , Masculino , Persona de Mediana Edad , Países Bajos , Oxígeno/administración & dosificación , Placebos/administración & dosificación , Placebos/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/virología , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del Tratamiento
9.
Intensive Care Med ; 47(3): 282-291, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1092644

RESUMEN

Coronavirus disease 19 (COVID-19) has posed unprecedented healthcare system challenges, some of which will lead to transformative change. It is obvious to healthcare workers and policymakers alike that an effective critical care surge response must be nested within the overall care delivery model. The COVID-19 pandemic has highlighted key elements of emergency preparedness. These include having national or regional strategic reserves of personal protective equipment, intensive care unit (ICU) devices, consumables and pharmaceuticals, as well as effective supply chains and efficient utilization protocols. ICUs must also be prepared to accommodate surges of patients and ICU staffing models should allow for fluctuations in demand. Pre-existing ICU triage and end-of-life care principles should be established, implemented and updated. Daily workflow processes should be restructured to include remote connection with multidisciplinary healthcare workers and frequent communication with relatives. The pandemic has also demonstrated the benefits of digital transformation and the value of remote monitoring technologies, such as wireless monitoring. Finally, the pandemic has highlighted the value of pre-existing epidemiological registries and agile randomized controlled platform trials in generating fast, reliable data. The COVID-19 pandemic is a reminder that besides our duty to care, we are committed to improve. By meeting these challenges today, we will be able to provide better care to future patients.


Asunto(s)
COVID-19 , Cuidados Críticos/tendencias , Pandemias , Cuidados Críticos/organización & administración , Planificación en Desastres , Humanos , Unidades de Cuidados Intensivos/organización & administración , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Equipo de Protección Personal , Capacidad de Reacción , Telemedicina , Flujo de Trabajo
10.
Crit Care ; 25(1): 40, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1054831

RESUMEN

The current coronavirus pandemic has impacted heavily on ICUs worldwide. Although many hospitals and healthcare systems had plans in place to manage multiple casualties as a result of major natural disasters or accidents, there was insufficient preparation for the sudden, massive influx of severely ill patients with COVID-19. As a result, systems and staff were placed under immense pressure as everyone tried to optimize patient management. As the pandemic continues, we must apply what we have learned about our response, both good and bad, to improve organization and thus patient care in the future.


Asunto(s)
COVID-19/terapia , Cuidados Críticos/organización & administración , Investigación sobre Servicios de Salud , Unidades de Cuidados Intensivos/organización & administración , COVID-19/epidemiología , Humanos
11.
Am J Respir Crit Care Med ; 202(8): 1171-1173, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: covidwho-917842
13.
Thromb Res ; 196: 308-312, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-759380

RESUMEN

BACKGROUND: Venous thromboembolism (VTE) is a frequent complication in critically ill patients with coronavirus disease 2019 (COVID-19) and is associated with mortality. Early diagnosis and treatment of VTE is warranted. OBJECTIVE: To develop a prediction model for VTE in critically ill COVID-19 patients. PATIENTS AND METHODS: In this retrospective cohort study, 127 adult patients with confirmed COVID-19 infection admitted to the intensive care unit of two teaching hospitals were included. VTE was diagnosed with either ultrasound or computed tomography scan. Univariate receiver operating characteristic (ROC) curves were constructed for Positive End Expiratory Pressure, PaO2/FiO2 ratio, platelet count, international normalized ratio, activated partial thromboplastin time as well as levels of fibrinogen, antithrombin, D-dimer and C-reactive protein (CRP). Multivariate analysis was done using binary linear regression. RESULTS: Variables associated with VTE in both univariate and multivariate analysis were D-dimer and CRP with an area under the curve (AUC) of 0.64, P = 0.023 and 0.75, P = 0.045, respectively. Variables indicating hypoxemia were not predictive. The ROC curve of D-dimer and CRP combined had an AUC of 0.83, P < 0.05. Categorized values of D-dimer and CRP were used to compute a mean absolute risk for the combination of these variables with a high positive predictive value. The predicted probability of VTE with a D-dimer > 15 in combination with a CRP > 280 was 98%. The negative predictive value of D-dimer was low. CONCLUSION: Elevated CRP and D-dimer have a high positive predictive value for VTE in critically ill COVID-19 patients. We developed a prediction table with these biomarkers that can aid clinicians in the timing of imaging in patients with suspected VTE.


Asunto(s)
Proteína C-Reactiva/análisis , COVID-19/complicaciones , Enfermedad Crítica , Productos de Degradación de Fibrina-Fibrinógeno/análisis , SARS-CoV-2 , Tromboembolia Venosa/etiología , Anciano , Biomarcadores/sangre , COVID-19/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Tromboembolia Venosa/diagnóstico
14.
J Thromb Haemost ; 18(9): 2138-2144, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-641045

RESUMEN

Hypercoagulability is an increasingly recognized complication of SARS-CoV-2 infection. As such, anticoagulation has become part and parcel of comprehensive COVID-19 management. However, several uncertainties exist in this area, including the appropriate type and dose of heparin. In addition, special patient populations, including those with high body mass index and renal impairment, require special consideration. Although the current evidence is still insufficient, we provide a pragmatic approach to anticoagulation in COVID-19, but stress the need for further trials in this area.


Asunto(s)
Anticoagulantes/uso terapéutico , Betacoronavirus/patogenicidad , Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , Coagulación Sanguínea/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/mortalidad , Trastornos de la Coagulación Sanguínea/virología , COVID-19 , Toma de Decisiones Clínicas , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno , Humanos , Pandemias , Selección de Paciente , Neumonía Viral/sangre , Neumonía Viral/mortalidad , Neumonía Viral/virología , Factores de Riesgo , SARS-CoV-2 , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA